Sains Malaysiana
53(11)(2024): 3639-3649
http://doi.org/10.17576/jsm-2024-5311-08
Pengeluaran Optimum dan Mampan: Aplikasi Pelan Caruman Tertakrif di
Malaysia
(Optimum and Sustainable Withdrawal: Application
of Defined Contribution Plans in Malaysia)
ZARUL KHALIFF KAMAL1, NORISZURA ISMAIL2,*,
ZAIDI ISA2 & NURUL HANIS AMINUDDIN JAFRY3
1Institute of Risk Management, School of Economics, Finance
and Banking, Universiti Utara Malaysia (UUM-IRM), 06010 Sintok, Kedah, Malaysia
2Jabatan Sains Matematik, Fakulti Sains dan Teknologi,
Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
3Pusat Pengajian Citra Universiti, Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor, Malaysia
Received:
1 May 2024/Accepted: 7 August 2024
Abstrak
Perancangan persaraan Kumpulan Wang Simpanan Pekerja (KWSP) di Malaysia
meliputi dua fasa utama iaitu fasa yang melibatkan pengumpulan caruman dalam
tahun-tahun bekerja dan fasa yang melibatkan pengeluaran caruman terkumpul.
Dalam fasa pertama, KWSP menyediakan beberapa pilihan bagi pengeluaran
pra-persaraan selain mengumpul caruman untuk persaraan. Dalam fasa kedua, KWSP
hanya menyediakan opsyen pengeluaran secara sekali gus di awal tahun persaraan.
Sekiranya pencarum tidak melakukan perancangan pengeluaran pra-persaraan yang
strategik, caruman terkumpul mungkin tidak dapat menyediakan pendapatan
persaraan yang mencukupi. Di samping itu, sekiranya pesara tidak melakukan
perancangan pengeluaran yang bertaktikal, pesara akan berhadapan dengan risiko
kemusnahan kewangan. Kajian ini bertujuan untuk membina dua model beraktuari,
iaitu model pengeluaran optimum dan model
pengeluaran mampan, bagi pengeluaran persaraan dengan aplikasi pelan caruman
tertakrif di Malaysia (KWSP). Hasil kajian mendapati bagi model pengeluaran
optimum, pesara yang mempunyai kadar penghindaran risiko yang lebih tinggi
dijangka melakukan pengeluaran yang lebih kecil di awal tahun persaraan untuk
menikmati pengeluaran yang lebih besar di akhir tempoh persaraan. Bagi model
pengeluaran mampan, pesara yang mempunyai kebarangkalian kemusnahan kewangan
yang lebih rendah adalah pesara yang menyimpan wang persaraannya ke dalam Unit
Amanah. Model pengeluaran optimum sesuai untuk pesara yang ingin memaksimumkan
penggunaan kekayaan persaraan, terutamanya jika mereka mempunyai kesihatan yang
kurang baik dan menjangka jangka hayat yang lebih pendek. Model pengeluaran
mampan pula lebih sesuai bagi pesara yang mempunyai kesihatan yang baik serta
ingin mengambil peluang daripada pulangan pelaburan yang tinggi hasil daripada
pelaburan kekayaan persaraan.
Kata kunci: Caruman tertakrif; pengeluaran mampan; pengeluaran optimum;
persaraan; unit amanah
Abstract
The retirement planning under Employees
Provident Fund (EPF) in Malaysia covers two main phases, the phase involving
the accumulation of contributions during working years and the phase involving
the withdrawal of accumulated contributions. In the first phase, EPF provides
several options for pre-retirement withdrawals in addition to collecting
contributions for retirement. In the second phase, EPF only provides a lump sum
withdrawal for the accumulated contribution at the beginning of the retirement
year. If contributors do not make strategic pre-retirement withdrawal plans,
the accumulated contributions may not provide sufficient retirement income. In
addition, if retirees do not make tactical withdrawal plans, retirees will be
faced with the risk of financial ruin. This study aims to build two actuarial
models, the optimum withdrawal model and the sustainable withdrawal model, for
the withdrawal of the accumulated contribution with the application of a
defined contribution plan in Malaysia (EPF). The results of the study found
that for the optimal model, retirees who have a higher risk aversion are
expected to make smaller withdrawals at the beginning of the retirement year to
enjoy larger withdrawals at the end of the retirement period. For the sustainable
model, retirees who have a lower probability of financial ruin are retirees who
invest their retirement money into Unit Trusts. The optimal model is suitable
for retirees who want to maximize the use of retirement wealth, especially if
they are in poor health and expect a shorter life expectancy. The sustainable
model is more suitable for retirees who have good health and want to take
advantage of the high investment returns resulting from the investment of
retirement wealth.
Keywords: Defined contribution; optimal
withdrawal; retirement; sustainable withdrawal; unit trust
REFERENCES
Ai, J., Brockett, P.L., Golden, L.L. & Zhu, W. 2016.
Health state transitions and longevity effects on retirees’ optimal
annuitization. Journal of Risk and
Insurance 84: 319-343.
Alaudin, R.I. & Ismail, N. 2019. Projection of
retirement adequacy with withdrawals and investment elements using simulation
approach. AIP Conference Proceedings 2138: 050004.
Alaudin, R.I., Ismail, N. & Isa, Z. 2017. Determinants
of retirement wealth adequacy: A case study in Malaysia. Institutions and Economies 9(1): 81-98.
Alaudin, R.I., Ismail, N. & Isa, Z. 2015. Projection
of retirement adequacy using wealth-need ratio: A case study in Malaysia. AIP Conference Proceedings 1643:
152-159.
Angoshtari, B., Bayraktar, E. & Young, V.R. 2016.
Minimizing the probability of lifetime drawdown under constant consumption. Insurance: Mathematics and Economics 69:
210-223.
Bateman, H., Eckert, C., Iskhakov, F., Louviere, J.,
Satchell, S. & Thorp, S. 2016. Individual capability and effort in
retirement benefit choice. Journal of
Risk and Insurance 85(2): 483-512.
Blanchett, D., Kowara, M. & Chen, P. 2012. Optimal
withdrawal strategy for retirement-income portfolios. The Retirement Management Journal 2(3): 7-20.
Bravo, J.M. & El Mekkaoui, N. 2018. Valuation of
longevity-linked life annuities. Insurance:
Mathematics and Economics 78: 212-229.
Bruszas, S., Kaschützke, B., Maurer, R. & Siegelin, I.
2018. Unisex pricing of German participating life annuities - Boon or bane for
customer and insurance company? Insurance:
Mathematics and Economics 78: 230-245.
Carannante, M., D’Amato, V., Haberman, S. & Menzietti,
M. 2023. Frailty-based Lee-Carter family of stochastic mortality models. Quality
& Quantity https://doi.org/10.1007/s11135-023-01786-6
Choi, H., Lugauer, S. & Mark, N.C. 2017. Precautionary
saving of Chinese and U.S. households. Journal
of Money, Credit and Banking 49(4): 635-661.
de Kort, J. & Vellekoop, M.H. 2017. Existence of optimal
consumption strategies in markets with longevity risk. Insurance: Mathematics and Economics 72: 107-121.
Degan, A. & Thibault, E. 2016. Dynastic accumulation
of wealth. Mathematical Social Sciences 81: 66-78.
Delong, Ł. & Chen, A. 2016. Asset allocation,
sustainable withdrawal, longevity risk and non-exponential discounting. Insurance: Mathematics and Economics 71:
342-352.
Denuit, M. & Trufin, J. 2016. From regulatory life
tables to stochastic mortality projections: The exponential decline model. Insurance: Mathematics and Economics 71:
295-303.
Donnelly, C., Guillen, M., Nielsen, J.P. &
Pérez-Marín, A.M. 2018. Implementing individual savings decisions for
retirement with bounds on wealth. ASTIN
Bulletin 48(1): 111-137.
Ewald, C.O. & Zhang, A. 2017. On the effects of
changing mortality patterns on investment, labour and consumption under
uncertainty. Insurance: Mathematics and
Economics 73: 105-115.
Fung, M.C., Ignatieva, K. & Sherris, M. 2014.
Systematic mortality risk: An analysis of guaranteed lifetime withdrawal
benefits in variable annuities. Insurance:
Mathematics and Economics 58(1): 103-115.
Halliday, T.J., He, H., Ning, L. & Zhang, H. 2019.
Health investment over the life-cycle. Macroeconomic
Dynamics 23(1): 178-215.
Hambel, C., Kraft, H., Schendel, L.S. & Steffensen, M.
2016. Life insurance demand under health shock risk. Journal of Risk and Insurance 84(4): 1171-1202.
Hanewald, K., Piggott, J. & Sherris, M. 2013.
Individual post-retirement longevity risk management under systematic mortality
risk. Insurance: Mathematics and
Economics 52(1): 87-97.
Harenberg, D. & Ludwig, A. 2019. Idiosyncratic risk,
aggregate risk, and the welfare effects of social security. International Economic Review 60(2):
661-692.
Huang, H., Milevsky, M.A. & Salisbury, T.S. 2017.
Retirement spending and biological age. Journal
of Economic Dynamics and Control 84: 58-76.
Huang, H., Milevsky, M.A. & Salisbury, T.S. 2014.
Valuation and hedging of the ruin-contingent life annuity (RCLA). Journal of Risk and Insurance 81(2):
367-395.
Huang, H., Milevsky, M.A. & Salisbury, T.S. 2012.
Optimal retirement consumption with a stochastic force of mortality. Insurance: Mathematics and Economics 51(2): 282-291.
Huang, H., Milevsky, M.A. & Wang, J. 2004. Ruined
moments in your life: How good are the approximations ? Insurance: Mathematics and Economics 34:
421-447.
Kamal, Z.K., Isa, S.M., Alaudin, R.I. & Ismail, N.
2018. Adequacy of retirement wealth in Malaysia: Spending behaviour analysis. The Journal of Social Sciences Research 6: 429-435.
Koutronas, E. & Yew, S-Y. 2017. Considerations in
pension reforms: A review of the challenges to sustainability and distributive
impartiality. Malaysian Journal of
Economic Studies 54(1): 159-177.
Kumpulan Wang Simpanan Pekerja. 2024. Caruman Majikan kepada Pekerja.
https://www.kwsp.gov.my/ms/majikan/tanggungjawab/caruman-wajib
Kwong, K-S., Tse, Y-K. & Chan, W-S. 2017. Enhancing
Singapore’s pension scheme: A blueprint for further flexibility. Risks 5(2): 25.
Liang, X. & Young, V.R. 2018a. Minimizing the
probability of ruin: Optimal per-loss reinsurance. Insurance: Mathematics and Economics 82: 181-190.
Liang, X. & Young, V.R. 2018b. Minimizing the
probability of ruin: Two riskless assets with transaction costs and
proportional reinsurance. Statistics and
Probability Letters 140: 167-175.
Mao, H., Ostaszewski, K.M. & Wang, Y. 2014. Optimal
retirement age, leisure and consumption. Economic
Modelling 43: 458-464.
Mayhew, L., Smith, D. & Wright, D. 2018. The effect of
longevity drift and investment volatility on income sufficiency in retirement. Insurance: Mathematics and Economics 78:
201-211.
Menoncin, F. & Regis, L. 2017. Longevity-linked assets
and pre-retirement consumption/portfolio decisions. Insurance: Mathematics and Economics 76: 75-86.
Milevsky, M.A. & Huang, H. 2011. Spending retirement
on planet vulcan: The impact of longevity risk aversion on optimal withdrawal
rates. Financial Analysts Journal 67(5): 45-58.
Rongen, J.J., Govers, T.M., Buma, P., Grutters, J.P.C.
& Hannink, G. 2016. Societal and economic effect of meniscus scaffold
procedures for irreparable meniscus injuries. The American Journal of Sports Medicine 44(7): 1724-1734.
Shen, Y. & Sherris, M. 2018. Lifetime asset allocation
with idiosyncratic and systematic mortality risks. Scandinavian Actuarial Journal 2018(4): 294-327.
Tan, H.K., Folk, J.Y. & Choong, K.F. 2012. Influence
of age cohort on retirement planning. African
Journal of Business Management 6(22): 6617-6630.
Warshawsky, M.J. 2015. Distribution methods for assets in
individual accounts for retirees: Life income annuities and withdrawal rules. The Journal of Retirement 3(2): 105-122.
Young, V.R. 2017. Purchasing casualty insurance to avoid
lifetime ruin. Insurance: Mathematics and
Economics 77: 133-142.
Yuh, Y. 2011. Assessing adequacy of retirement income for
U.S. households: A replacement ratio approach. Geneva Papers on Risk and Insurance: Issues and Practice 36(2):
304-323.
Zeng, Y., Li, D., Chen, Z. & Yang, Z. 2018. Ambiguity
aversion and optimal derivative-based pension investment with stochastic income
and volatility. Journal of Economic
Dynamics and Control 88: 70-103.
*Corresponding author; email: ni@ukm.edu.my