Sains Malaysiana 53(11)(2024): 3639-3649

http://doi.org/10.17576/jsm-2024-5311-08

 

Pengeluaran Optimum dan Mampan: Aplikasi Pelan Caruman Tertakrif di Malaysia

(Optimum and Sustainable Withdrawal: Application of Defined Contribution Plans in Malaysia)

 

ZARUL KHALIFF KAMAL1, NORISZURA ISMAIL2,*, ZAIDI ISA2 & NURUL HANIS AMINUDDIN JAFRY3

 

1Institute of Risk Management, School of Economics, Finance and Banking, Universiti Utara Malaysia (UUM-IRM), 06010 Sintok, Kedah, Malaysia

2Jabatan Sains Matematik, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

3Pusat Pengajian Citra Universiti, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

Received: 1 May 2024/Accepted: 7 August 2024

 

Abstrak

Perancangan persaraan Kumpulan Wang Simpanan Pekerja (KWSP) di Malaysia meliputi dua fasa utama iaitu fasa yang melibatkan pengumpulan caruman dalam tahun-tahun bekerja dan fasa yang melibatkan pengeluaran caruman terkumpul. Dalam fasa pertama, KWSP menyediakan beberapa pilihan bagi pengeluaran pra-persaraan selain mengumpul caruman untuk persaraan. Dalam fasa kedua, KWSP hanya menyediakan opsyen pengeluaran secara sekali gus di awal tahun persaraan. Sekiranya pencarum tidak melakukan perancangan pengeluaran pra-persaraan yang strategik, caruman terkumpul mungkin tidak dapat menyediakan pendapatan persaraan yang mencukupi. Di samping itu, sekiranya pesara tidak melakukan perancangan pengeluaran yang bertaktikal, pesara akan berhadapan dengan risiko kemusnahan kewangan. Kajian ini bertujuan untuk membina dua model beraktuari, iaitu model pengeluaran optimum dan model pengeluaran mampan, bagi pengeluaran persaraan dengan aplikasi pelan caruman tertakrif di Malaysia (KWSP). Hasil kajian mendapati bagi model pengeluaran optimum, pesara yang mempunyai kadar penghindaran risiko yang lebih tinggi dijangka melakukan pengeluaran yang lebih kecil di awal tahun persaraan untuk menikmati pengeluaran yang lebih besar di akhir tempoh persaraan. Bagi model pengeluaran mampan, pesara yang mempunyai kebarangkalian kemusnahan kewangan yang lebih rendah adalah pesara yang menyimpan wang persaraannya ke dalam Unit Amanah. Model pengeluaran optimum sesuai untuk pesara yang ingin memaksimumkan penggunaan kekayaan persaraan, terutamanya jika mereka mempunyai kesihatan yang kurang baik dan menjangka jangka hayat yang lebih pendek. Model pengeluaran mampan pula lebih sesuai bagi pesara yang mempunyai kesihatan yang baik serta ingin mengambil peluang daripada pulangan pelaburan yang tinggi hasil daripada pelaburan kekayaan persaraan.

 

Kata kunci: Caruman tertakrif; pengeluaran mampan; pengeluaran optimum; persaraan; unit amanah

 

Abstract

The retirement planning under Employees Provident Fund (EPF) in Malaysia covers two main phases, the phase involving the accumulation of contributions during working years and the phase involving the withdrawal of accumulated contributions. In the first phase, EPF provides several options for pre-retirement withdrawals in addition to collecting contributions for retirement. In the second phase, EPF only provides a lump sum withdrawal for the accumulated contribution at the beginning of the retirement year. If contributors do not make strategic pre-retirement withdrawal plans, the accumulated contributions may not provide sufficient retirement income. In addition, if retirees do not make tactical withdrawal plans, retirees will be faced with the risk of financial ruin. This study aims to build two actuarial models, the optimum withdrawal model and the sustainable withdrawal model, for the withdrawal of the accumulated contribution with the application of a defined contribution plan in Malaysia (EPF). The results of the study found that for the optimal model, retirees who have a higher risk aversion are expected to make smaller withdrawals at the beginning of the retirement year to enjoy larger withdrawals at the end of the retirement period. For the sustainable model, retirees who have a lower probability of financial ruin are retirees who invest their retirement money into Unit Trusts. The optimal model is suitable for retirees who want to maximize the use of retirement wealth, especially if they are in poor health and expect a shorter life expectancy. The sustainable model is more suitable for retirees who have good health and want to take advantage of the high investment returns resulting from the investment of retirement wealth.

 

Keywords: Defined contribution; optimal withdrawal; retirement; sustainable withdrawal; unit trust

 

REFERENCES

Ai, J., Brockett, P.L., Golden, L.L. & Zhu, W. 2016. Health state transitions and longevity effects on retirees’ optimal annuitization. Journal of Risk and Insurance 84: 319-343.

Alaudin, R.I. & Ismail, N. 2019. Projection of retirement adequacy with withdrawals and investment elements using simulation approach.  AIP Conference Proceedings 2138: 050004.

Alaudin, R.I., Ismail, N. & Isa, Z. 2017. Determinants of retirement wealth adequacy: A case study in Malaysia. Institutions and Economies 9(1): 81-98.

Alaudin, R.I., Ismail, N. & Isa, Z. 2015. Projection of retirement adequacy using wealth-need ratio: A case study in Malaysia. AIP Conference Proceedings 1643: 152-159.

Angoshtari, B., Bayraktar, E. & Young, V.R. 2016. Minimizing the probability of lifetime drawdown under constant consumption. Insurance: Mathematics and Economics 69: 210-223.

Bateman, H., Eckert, C., Iskhakov, F., Louviere, J., Satchell, S. & Thorp, S. 2016. Individual capability and effort in retirement benefit choice. Journal of Risk and Insurance 85(2): 483-512.

Blanchett, D., Kowara, M. & Chen, P. 2012. Optimal withdrawal strategy for retirement-income portfolios. The Retirement Management Journal 2(3): 7-20.

Bravo, J.M. & El Mekkaoui, N. 2018. Valuation of longevity-linked life annuities. Insurance: Mathematics and Economics 78: 212-229.

Bruszas, S., Kaschützke, B., Maurer, R. & Siegelin, I. 2018. Unisex pricing of German participating life annuities - Boon or bane for customer and insurance company? Insurance: Mathematics and Economics 78: 230-245.

Carannante, M., D’Amato, V., Haberman, S. & Menzietti, M. 2023. Frailty-based Lee-Carter family of stochastic mortality models. Quality & Quantity https://doi.org/10.1007/s11135-023-01786-6

Choi, H., Lugauer, S. & Mark, N.C. 2017. Precautionary saving of Chinese and U.S. households. Journal of Money, Credit and Banking 49(4): 635-661.

de Kort, J. & Vellekoop, M.H. 2017. Existence of optimal consumption strategies in markets with longevity risk. Insurance: Mathematics and Economics 72: 107-121.

Degan, A. & Thibault, E. 2016. Dynastic accumulation of wealth. Mathematical Social Sciences 81: 66-78.

Delong, Ł. & Chen, A. 2016. Asset allocation, sustainable withdrawal, longevity risk and non-exponential discounting. Insurance: Mathematics and Economics 71: 342-352.

Denuit, M. & Trufin, J. 2016. From regulatory life tables to stochastic mortality projections: The exponential decline model. Insurance: Mathematics and Economics 71: 295-303.

Donnelly, C., Guillen, M., Nielsen, J.P. & Pérez-Marín, A.M. 2018. Implementing individual savings decisions for retirement with bounds on wealth. ASTIN Bulletin 48(1): 111-137.

Ewald, C.O. & Zhang, A. 2017. On the effects of changing mortality patterns on investment, labour and consumption under uncertainty. Insurance: Mathematics and Economics 73: 105-115.

Fung, M.C., Ignatieva, K. & Sherris, M. 2014. Systematic mortality risk: An analysis of guaranteed lifetime withdrawal benefits in variable annuities. Insurance: Mathematics and Economics 58(1): 103-115.

Halliday, T.J., He, H., Ning, L. & Zhang, H. 2019. Health investment over the life-cycle. Macroeconomic Dynamics 23(1): 178-215.

Hambel, C., Kraft, H., Schendel, L.S. & Steffensen, M. 2016. Life insurance demand under health shock risk. Journal of Risk and Insurance 84(4): 1171-1202.

Hanewald, K., Piggott, J. & Sherris, M. 2013. Individual post-retirement longevity risk management under systematic mortality risk. Insurance: Mathematics and Economics 52(1): 87-97.

Harenberg, D. & Ludwig, A. 2019. Idiosyncratic risk, aggregate risk, and the welfare effects of social security. International Economic Review 60(2): 661-692. 

Huang, H., Milevsky, M.A. & Salisbury, T.S. 2017. Retirement spending and biological age. Journal of Economic Dynamics and Control 84: 58-76.

Huang, H., Milevsky, M.A. & Salisbury, T.S. 2014. Valuation and hedging of the ruin-contingent life annuity (RCLA). Journal of Risk and Insurance 81(2): 367-395.

Huang, H., Milevsky, M.A. & Salisbury, T.S. 2012. Optimal retirement consumption with a stochastic force of mortality. Insurance: Mathematics and Economics 51(2): 282-291.

Huang, H., Milevsky, M.A. & Wang, J. 2004. Ruined moments in your life: How good are the approximations ? Insurance: Mathematics and Economics 34: 421-447.

Kamal, Z.K., Isa, S.M., Alaudin, R.I. & Ismail, N. 2018. Adequacy of retirement wealth in Malaysia: Spending behaviour analysis. The Journal of Social Sciences Research 6: 429-435.

Koutronas, E. & Yew, S-Y. 2017. Considerations in pension reforms: A review of the challenges to sustainability and distributive impartiality. Malaysian Journal of Economic Studies 54(1): 159-177.

Kumpulan Wang Simpanan Pekerja. 2024. Caruman Majikan kepada Pekerja.
https://www.kwsp.gov.my/ms/majikan/tanggungjawab/caruman-wajib

Kwong, K-S., Tse, Y-K. & Chan, W-S. 2017. Enhancing Singapore’s pension scheme: A blueprint for further flexibility. Risks 5(2): 25.

Liang, X. & Young, V.R. 2018a. Minimizing the probability of ruin: Optimal per-loss reinsurance. Insurance: Mathematics and Economics 82: 181-190.

Liang, X. & Young, V.R. 2018b. Minimizing the probability of ruin: Two riskless assets with transaction costs and proportional reinsurance. Statistics and Probability Letters 140: 167-175.

Mao, H., Ostaszewski, K.M. & Wang, Y. 2014. Optimal retirement age, leisure and consumption. Economic Modelling 43: 458-464.

Mayhew, L., Smith, D. & Wright, D. 2018. The effect of longevity drift and investment volatility on income sufficiency in retirement. Insurance: Mathematics and Economics 78: 201-211.

Menoncin, F. & Regis, L. 2017. Longevity-linked assets and pre-retirement consumption/portfolio decisions. Insurance: Mathematics and Economics 76: 75-86.

Milevsky, M.A. & Huang, H. 2011. Spending retirement on planet vulcan: The impact of longevity risk aversion on optimal withdrawal rates. Financial Analysts Journal 67(5): 45-58.

Rongen, J.J., Govers, T.M., Buma, P., Grutters, J.P.C. & Hannink, G. 2016. Societal and economic effect of meniscus scaffold procedures for irreparable meniscus injuries. The American Journal of Sports Medicine 44(7): 1724-1734.

Shen, Y. & Sherris, M. 2018. Lifetime asset allocation with idiosyncratic and systematic mortality risks. Scandinavian Actuarial Journal 2018(4): 294-327.

Tan, H.K., Folk, J.Y. & Choong, K.F. 2012. Influence of age cohort on retirement planning. African Journal of Business Management 6(22): 6617-6630.

Warshawsky, M.J. 2015. Distribution methods for assets in individual accounts for retirees: Life income annuities and withdrawal rules. The Journal of Retirement 3(2): 105-122.

Young, V.R. 2017. Purchasing casualty insurance to avoid lifetime ruin. Insurance: Mathematics and Economics 77: 133-142.

Yuh, Y. 2011. Assessing adequacy of retirement income for U.S. households: A replacement ratio approach. Geneva Papers on Risk and Insurance: Issues and Practice 36(2): 304-323.

Zeng, Y., Li, D., Chen, Z. & Yang, Z. 2018. Ambiguity aversion and optimal derivative-based pension investment with stochastic income and volatility. Journal of Economic Dynamics and Control 88: 70-103.

 

*Corresponding author; email: ni@ukm.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous next